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Abstract

Meta-analysis of longitudinal studies combines effect sizes measured at pre-determined

time points. The most common approach involves performing separate univariate meta-

analyses at individual time points. This simplistic approach ignores dependence between

longitudinal effect sizes, which might result in less precise parameter estimates. In this

paper, we show how to conduct a meta-analysis of longitudinal effect sizes where we con-

trast different covariance structures for dependence between effect sizes, both within and

between studies. We propose new combinations of covariance structures for the depen-

dence between effect size and utilize a practical example involving meta-analysis of 17 tri-

als comparing postoperative treatments for a type of cancer, where survival is measured at

6, 12, 18 and 24 months post randomization. Although the results from this particular data

set show the benefit of accounting for within-study serial correlation between effect sizes,

simulations are required to confirm these results.

Introduction

In univariate meta-analysis, individual effect sizes such as odds ratios from two or more studies
are combined into a single summary effect size. For instance, odds ratios from 33 randomized
controlled trials evaluating the use of intravenous streptokinase for the treatment of myocardial
infarction, consisting of a total of 36 974 participants, were pooled in a univariate meta-analysis
[1]. Univariate meta-analysis has been applied in many fields of research such as pharmacology
[2], psychology [3], education [4], and evidence-basedmedicine [5]. The methods for univari-
ate meta-analysis are well-known ([6]–[15]) and it can be implemented in standard statistical
software such as using STATA commandmetan [16],metafor package in R [17], and the
mixed procedure in SAS [18]. There are also common routine computer packages that can
perform univariate meta-analysis such as MetaWin [19], WEasyMA [20], Review Manager
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[21], MIX [22], ComprehensiveMeta-analysis [23], and OpenMetaAnalyst
([24, 25]).

In the case where there are multiple correlated effect sizes per study, an analyst can either
perform separate univariate meta-analysis for each effect size or performmultivariate meta-
analysis where the multiple effect sizes are jointly synthesized. A typical example comes from
hypertension trials where both systolic and diastolic blood pressure measurements are
reported.Multivariate meta-analysis methods are well-known ([6], [26]–[29]) and can be
implemented in standard statistical software ([30]–[34]). The problem with performing sepa-
rate univariate meta-analysis is that it ignores correlation between the effect sizes and this can
increase the standard error of point estimates [35]. Empirical and simulation-based compari-
sons of point estimates of binary outcomes betweenmultivariate and univariate meta-analyses
have shown that although generally the point estimates were comparable, the multivariate
model with the discrete likelihood yielded smaller between study variance estimates and nar-
rower prediction intervals for new outcomes [36], [37]. In the case of outcome reporting bias,
where some studies in a meta-analysis partially report results, multivariate meta-analysis can
reduce the impact of this bias when compared with univariate meta-analysis [38]. However,
althoughmultivariate meta-analysis can produce estimates with better statistical properties, it
often requires makingmore assumptions which may therefore not result in the expected bene-
fits of inference [39].

Perhaps a bigger challenge in meta-analysis is when the effect sizes are reported longitudi-
nally. For example, consider the data analysed in [40] where studies reported the effect of deep-
brain stimulation (DBS) in patients with Parkinson’s disease at 3, 6, 12 months or later after
implantation of the stimulator. The challenge is to account for correlation between effect sizes,
both within and between studies. This longitudinal meta-analysis can be viewed in the frame-
work of multivariate meta-analysis [41]. Furthermore, the longitudinal meta-analysis can be
set within the general linear mixed model framework [40] which offers more flexibility in spec-
ifying covariance structures between effect sizes, both within and between studies. In this
paper, we adopted the approach in [40] but extended it to other combinations of covariance
structures for the between and within study effect sizes. We used a practical application exam-
ple of a meta-analysis of 17 randomized controlled trials comparing radiotherapy and chemo-
therapy versus radiotherapy alone for postoperative treatment of malignant gliomas, where
survival is reported at 6, 12, 18, and 24 months post randomization [42]. The structure of the
paper is as follows: section 2 consists of longitudinal meta-analysis models, section 3 contains
estimation methods, section 4 covers the different covariance structures applied in this paper,
section 5 describes the example used in this paper including results, and section 6 covers the
discussion of the methodology and application results.

Longitudinal meta-analysis model

We require a meta-analysis of n studies, denoted by i = 1, � � �, n. ConsiderT longitudinal effect
sizes per study denoted by t = 1, � � �, T. So each study i yields T estimated effect sizes

Yi = (Yi1, � � �, Yit, � � �, YiT)0 such that

Yit ¼ x0itβþ z 0itδi þ eit: ð1Þ

In this linear model, xit is a p × 1 design vector of p fixed effects with corresponding regres-
sion coefficients contained in the p × 1 vector, β. Likewise zit is a q × 1 design vector of q(�p)
random effects which are set in the q × 1 vector, δi. The last term of the model, eit, is the resid-
ual term associated with Yit.
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Extending Eq (1) above gives the model for Yi, that is,

Y i ¼ Xiβþ Ziδi þ ei; ð2Þ

which is a general linear mixed model [43]. We assume, without loss of generality, a no-inter-
cept model where Xi is a T × p designmatrix of p fixed effects,β is a p × 1 vector of fixed effect
regression coefficients to be estimated, Zi(� Xi) is a T × q designmatrix of q random effects
δi = (δi1, � � �, δij, � � �, δiq)0, and ei = (ei1, � � �, eit, � � �, eiT)0 is a vector of residuals. Effect sizes from
different studies are assumed to be independent, that is, cov(eit, emt0) = 0 when i 6¼m for time
points t, t0 = 1, � � �, T. We also assume that residuals and random effects are independent, cov
(ei, δi) = 0.

Here we assume, without loss of generality, that the joint distribution of random effects is
0-centered δi * MVN(0,S) (Multivariate Normal Distribution) where S is a q × q symmetric
positive-definite variance-covariancematrix consisting of diagonal elements varðdijÞ ¼ t2

j ðj ¼
1; :::; qÞ and non-diagonal elements ρjj0 τj τj0 with ρjj0 representing the correlation between ran-
dom effects δij and δij0. We also assume that the joint distribution of residuals is 0-centered
ei * MVN(0,Si) with T × T symmetric positive-definite variance-covariancematrix of Si con-
sisting of diagonal elements varðeitÞ ¼ s2

it and non-diagonal elements ρitt0 σit σit0, where ρitt0 is
the within-study serial correlation of effect sizes between time points t and t0. Therefore mar-
ginallyYi * MVN(Xi β,Vi) whereV i ¼ ZiSZ

0

i þ Si is a symmetric positive-definite variance-
covariance matrix. The within-study and between-study correlations between effect sizes are
determined by the covariance structures imposed on Si and S respectively.

The goal of meta-analysis is to estimate the parameters in the vector β. We also estimate var-
iances ðt2

j Þ and correlations (ρjj0) between random effects, which are entries of S. For the pur-
pose of ensuring identifiability, we regard the entries of Si as fixed and known constants
although they are estimated in practice.

Estimation of parameters

Maximum Likelihood Estimation

Let α denote the vector of all variance and covariance parameters found in V iðαÞ ¼
ZiSZ

0

i þ Si and θ = (β0, α0)0 be the s–dimensional vector of all parameters in the marginal
model for Yi. The marginal likelihood function is given by

LMLðθÞ ¼
Yn

i¼1

�

ð2pÞ
� T=2
jV iðαÞj

� 1=2

� exp �
1

2
ðY i � XiβÞ

0V � 1

i ðαÞðY i � XiβÞ
� �� ð3Þ

The marginal log-likelihood function ℓ(θ) is then given by

logLMLðθÞ ¼ � ðnT=2Þ log ð2pÞ � ðn=2Þ log ðjV iðαÞjÞ

� ð1=2Þ
Xn

i¼1

ðY i � XiβÞ
0V iðαÞ

� 1
ðY i � XiβÞ

ð4Þ
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Assuming α to be known, the maximum likelihood estimator (MLE) of β, obtained from
maximizing Eq (4), conditional on α is then given by ([43], [44])

β̂ðαÞ ¼
Xn

i¼1

X0iW iXi

 !� 1
Xn

i¼1

X0iW iY i; ð5Þ

whereW i ¼ V � 1

i ðαÞ.
In the case where α is not known, but an estimate α̂ is given, then β is estimated by Eq (5)

withWi replaced by Ŵ i ¼ V � 1

i ðα̂Þ. The MLE of α is obtained by maximizing Eq (4) with
respect to α, after β is replaced by Eq (5).

Restricted Maximum Likelihood Estimation

The RestrictedMaximum LikelihoodEstimators (REML) of α and β can be found by maximiz-
ing the REML likelihood function [44]

LREMLðθÞ ¼
�
�
�
�

Xn

i¼1

X0iW iðαÞXi

�
�
�
�

� 1
2

LMLðθÞ ð6Þ

with respect to all parameters (α and β) simultaneously.

Modeling covariance structures

For brevity and without loss of generality, we assume T = 4 time points for each study. We also
assume, for parsimonious reasons and without loss of generality, that Xi consists of only time
indicators such that Xi = I4 (an identity matrix of order 4), where we ignore intercept terms.
We consider six models with different covariance structures for Eq (2).

Model 1 - Independent random time effects model

In this model, effect sizes at different time points do not depend on each other. It is therefore
equivalent to performing univariate random effectsmeta-analysis at each time point separately.
Mathematically this model allows independent random intercept effects at each time point t
per study i, δit, such that

Yit ¼ bt þ dit þ eit; t ¼ 1; � � � ; 4; ð7Þ

where we assume dit � Nð0; t2
t Þ and eit � Nð0; s2

itÞ to be independent.We therefore set
Zi = Xi = I4 so that Eq (2) becomes

Y i ¼ βþ δi þ ei; ð8Þ

and

VðY iÞ ¼ Sþ Si ¼ diagðt2
1
þ s2

i1; t
2
2
þ s2

i2; t
2
3
þ s2

i3; t
2
4
þ s2

i4Þ: ð9Þ

However, this model ignores within-study serial correlation between longitudinal effect sizes
which exists because it is the same individuals who are measured repeatedly at these time
points.

Model 2 - Random study effects model

This model accounts for dependence between effect sizes by assigning a random intercept effect
that is common to all longitudinal effect sizes from a given study while assuming zero within-
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study serial correlations between longitudinal effect sizes, that is, Si ¼ diagðs2
i1; ::;s

2
i4Þ. There-

fore Z is a 4 × 1 vector of ones so that δi = δi is a scalar and the model is now given by

Yit ¼ bt þ di þ eit; t ¼ 1; � � � ; 4; ð10Þ

where we assume δi * N(0, τ2) with τ2 representing the between-study variability or heteroge-
neity. The variance-covariancematrix is now given by VðY iÞ ¼ ZiSZ

0

i þ Si, a 4 × 4 matrix
consisting of diagonal elements set to t2 þ s2

it and off-diagonal elements all equal to τ2, where
S = V(δi) = τ2. Since all the off-diagonal elements are equal to τ2, we can deduce that
corrðYit;Yit0 Þ ¼ t2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 þ s2

itÞðt
2 þ s2

it0 Þ
p

between two time points (t, t0). Therefore, by includ-
ing a random study effect, we automatically induce a correlation between any two effect sizes
within a study. These correlations are assumed to be the same for each set of time points,
regardless of the time lag between the time points. This covariance structure is also known as
compound symmetry.

However, this model allows only one random effect for all the longitudinal effect sizes from
each study and therefore ignores the serial correlation between effect sizes for instance, effect
sizes closer together tend to be more strongly correlated than those measured far apart due to
factors such as loss-to-follow-up.

Model 3 - Correlated random time effects model

This is an extension of the independent random time effectsmodel where the dependence
between effect sizes is accounted for through the dependence between random time effects.
This model imposes heteroscedasticAR(1) covariance structure for the random time effects
while assuming zero within-study serial correlations between longitudinal effect sizes, that is,
Si ¼ diagðs2

i1; ::; s
2
i4Þ. As a result, the variance-covariancematrix is now given by V(Yi) =

S + Si, with diagonal elements (t2
1
þ s2

i1; ::; t
2
4
þ s2

i4) and off-diagonal elements (rjt� t0 j
t

tttt0) for
time points t and t0, where ρτ is the correlation between any two adjacent random time effects.
Therefore the dependence between effect sizes become stronger as the lag between them gets
smaller. This is plausible in longitudinal studies where loss-to-follow up increases with time
such that effect sizes measured far apart have less dependence than those closer to one another.

However, this model assumes independent within-study residuals which is not suitable for
longitudinal effect sizes. A structure that takes account of the autocorrelation between the effect
sizes within a study is more suitable.

Model 4 - Correlated within-study effect sizes model

This is an extension of the independent random time effectsmodel where the dependence
between effect sizes is accounted for through the dependence in effect sizes within the same
study. This model imposes heteroscedasticAR(1) covariance structure for the within-study
longitudinal effect sizes while assuming independent random time effects, that is,
S ¼ diagðt2

1
; ::; t2

4
Þ. As a result, the variance-covariancematrix is now given by V(Yi) = S + Si,

with diagonal elements (t2
1
þ s2

i1; ::; t
2
4
þ s2

i4) and off-diagonal elements (rjt� t0 j
s sitsit0) for time

points t and t0, where ρs is the correlation between any two adjacent within-study effect sizes.
This model, which imposes correlated within-study effect sizes while assuming independent

random time effect, was not applied in either [40] or [41]. The purpose of including this model
is to assess which covariance structure results in a more improved model between the within-
study covariance matrix (Si) and between-study covariance (S).
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Model 5 - Correlated within-study effect sizes and correlated random

time effects

This is an extension of the independent random time effectsmodel where the dependence
between effect sizes is accounted for through the dependence in both effect sizes within the
same study and random time effects. It is a combination of the above two models, where the
heteroscedasticAR(1) covariance structures are imposed on both Si and S. The variance-
covariance matrix is now given by V(Yi) = S+Si, with diagonal elements (t2

1
þ s2

i1; ::; t
2
4
þ s2

i4)
and off-diagonal elements (rjt� t0 j

t
tttt0 þ rjt� t0 j

s sitsit0) for time points t and t0.
This model accounts for any dependence between effect sizes, both within and between

studies. However, this model requires estimation of one more parameter compared to each of
the above two models.

Model 6 - Correlated random time effects (unstructured) and correlated

within-study effect sizes

This is an extension of the independent random time effectsmodel where the dependence
between effect sizes is accounted for through the dependence in both effect sizes within the
same study and random time effects.We assume an unstructured covariance structure for the
random time effects and a heteroscedasticAR(1) covariance structure for the within-study lon-
gitudinal effect sizes. The variance-covariancematrix is now given by V(Yi) = S + Si, with diag-
onal elements (t2

1
þ s2

i1; ::; t
2
4
þ s2

i4) and off-diagonal elements (rtt0tttt0 þ rjt� t0 j
s sitsit0) for time

points t and t0.
This combination of covariance structures was also not applied by [40] and [41]. The

unstructured covariance matrix is quite a superior covariance structure although its require-
ment for a higher number of parameters may compromise model parsimony and convergence
in some cases.

We did not include models with heteroscedastic compound symmetry (CSH) and autore-
gressive of order 1 (AR(1)) because we obtained similar results to the models above.

Example

We use the example given in [42], also used by [41], of a meta-analysis of 17 randomized con-
trolled trials comparing post-operative radiation therapy plus chemotherapy (Experimental
group (E)) with radiation therapy alone (Control group (C)) in patients with malignant glio-
mas. The outcome of interest is the number of patients surviving at 6, 12, 18, and 24 months.
The data, as given and described in [41], is reproduced in Table 1. We use this example to illus-
trate the efficiencyof the longitudinal meta-analysis models described above. However, since
the meta-analysis data is not up-to-date, we will not focus on the clinical significance of these
treatments for this condition.

There were missing data for study 17 at months 6 and 18. There were no survivors in the
control group at month 24 for studies 3 and 10.

Estimation and implementation of the models

The parameters for the general linear mixed model were estimated using the restrictedmaxi-
mum likelihood (REML) estimation in R. The R code is given in Appendix A. However, for the
estimation of within-study error correlation, a SAS program by [40] was used.

Longitudinal Meta-Analysis
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Results for the separate univariate random effects meta-analysis

We first ran separate univariate random effectsmeta-analyses for month 6, 12, 18 and 24. The
results obtained are summarised in Table 2 and forest plots are given in Fig 1.

The results in Table 2 clearly shows that the odds of survival were significantly higher in the
experimental group compared with the control group. This was consistent across all longitudi-
nal time points frommonth 6 to month 24. All the four log odds ratios at month 6, 12, 18 and
24 months were statistically significant because the 95% confidence intervals are all greater
than 0. The least log odds ratio (0.22) was at month 6 which increased at month 12 (0.39) and
at month 18 (0.49). This highest log odds ratio at month 18 slightly decreased to 0.40 at month
24. Heterogeneity was not statistically significant at all the time points ([12], [45], [46]).

Results for the linear mixed model

The results of applying the general linear mixedmodel Eq (2) to the example data using models
1 to 6 are shown in Tables 3 and 4. We obtained exactly the same results for the independence

Table 1. Number of survivors at 6, 12, 18 and 24 months following post-operative treatment with either radiotherapy plus chemotherapy (E) or

radiotherapy alone (C) in patients with malignant gliomas from 17 studies [42].

Study Sample size, E(C) Number of survivors, E(C)

6 months 12 months 18 months 24 months

1 19 (22) 16 (20) 11 (12) 4 (8) 4 (3)

2 34 (35) 22 (22) 18 (12) 15 (8) 15 (6)

3 72 (68) 44 (40) 21 (15) 10 (3) 3 (0)

4 22 (20) 19 (12) 14 (5) 5 (4) 2 (3)

5 70 (32) 62 (27) 42 (13) 26 (6) 15 (5)

6 183 (94) 130 (65) 80 (33) 47 (14) 30 (11)

7 26 (50) 24 (30) 13 (18) 5 (10) 3 (9)

8 61 (55) 51 (44) 37 (30) 19 (19) 11 (15)

9 36 (25) 30 (17) 23 (12) 13 (4) 10 (4)

10 45 (35) 43 (35) 19 (14) 8 (4) 6 (0)

11 246 (208) 169 (139) 106 (76) 67 (42) 51 (35)

12 386 (141) 279 (97) 170 (46) 97 (21) 73 (8)

13 59 (32) 56 (30) 34 (17) 21 (9) 20 (7)

14 45 (15) 42 (10) 18 (3) 9 (1) 9 (1)

15 14 (18) 14 (18) 13 (14) 12 (13) 9 (12)

16 26 (19) 21 (15) 12 (10) 6 (4) 5 (1)

17 74 (75) – 42 (40) – 23 (30)

doi:10.1371/journal.pone.0164898.t001

Table 2. Meta-analysis results from separate univariate random effects meta-analyses for the log

odds ratio of surviving under the experimental (E) versus the control (C) treatments at month 6, 12,

18, and 24 [42].

log OR (95%CI) τ2 χ2 p-value I2

Month 6 0.22 (0.02, 0.43) 0.00 0.348 0.0%

Month 12 0.39 (0.22, 0.57) 0.00 0.876 0.0%

Month 18 0.49 (0.27, 0.71) 0.00 0.661 0.0%

Month 24 0.40 (0.04, 0.76) 0.20 0.053 42.0%

doi:10.1371/journal.pone.0164898.t002
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Fig 1. Forest Plots for Month 6, 12, 18 and 24.

doi:10.1371/journal.pone.0164898.g001

Table 3. Meta-analysis results for models 1 to 3 from the linear mixed model for the log odds ratio of

surviving under experimental treatment compared to the control treatment using data for 17 trials

[42].

Model 1 Model 2 Model 3

Covariance structures Between random time effects

(Σ)

Indepa CSb HAR(1)c

Within-study errors (Si) Indep Indep Indep

Log odds ratio estimates

Month 6 0.22 (0.02,

0.43)

0.22 (-0.01,

0.45)

0.22 (0.02,

0.43)

Month 12 0.39 (0.22,

0.57)

0.41 (0.21, 0.61) 0.39 (0.21,

0.57)

Month 18 0.49 (0.27,

0.71)

0.50 (0.25, 0.74) 0.47 (0.21,

0.72)

Month 24 0.40 (0.04,

0.76)

0.38 (0.12, 0.65) 0.42 (0.05,

0.78)

Between study variance estimates

Month 6 0.00 τ2 = 0.03 0.00

Month 12 0.00 0.01

Month 18 0.00 0.05

Month 24 0.20 0.23

Model Fit

AICd 121.3 119.6 120.5

aIndep = Independence
bCS = Compound Symmetry
cHAR(1) = Heteroscedastic autoregressive (1)
dAIC = Akaike Information Criterion

doi:10.1371/journal.pone.0164898.t003
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model as the ones obtained from the separate meta-analyses in Table 2. This is because the
independencemodel is equivalent to performing univariate meta-analysis at each time point
separately. Inspection of the log odds ratio estimates from all the six models (Tables 3 and 4)
show slight differences between the models. It is also clear that the pattern of the results were
the same across all the six models; the log odds ratios at month 6 were the least, they increased
at month 12 and increased again to reach maximum at month 18 after which they decreased
slightly at month 24. All the log odds ratio estimates at month 12 and 18 showed that the odds
of survivingwere significantly higher for the experimental treatment compared to the control
treatment since the 95% confidence intervals exceed the value of 0. This statistical significance
was also shown for month 6 using models 1,3, and 6. Although the log odds ratios at month 6
for models 2, 4 and 5 are not statistically significant at 5% level of significance, the correspond-
ing p-values were slightly above 0.05 (data not shown). At month 24, the odds of surviving
under experimental versus control treatment were higher for all the models except models 5
and 6 where the p-values were also slightly above 0.05. In overall, the likelihood of survival is
significantly better under the experimental treatment compared to the control treatment.

Results for the between-study variances from the linear mixedmodel ranged from 0.00 to
0.23 and were not statistically different from zero. Results for the estimates of within-study cor-
relation are not shown in Tables 3 and 4 but we found values of 0.60 and 0.61 for models 4 and
5, respectively, using SAS code from [40].

Table 4. Meta-analysis results for models 4 to 6 from the linear mixed model for the log odds ratio of

surviving under experimental treatment compared to the control treatment using data for 17 trials

[42].

Model 4 Model 5 Model 6

Covariance structures Between random time effects

(Σ)

Indepa HAR(1)b UNc

Within-study errors (Si) HAR(1) HAR(1) HAR(1)

Log odds ratio estimates

Month 6 0.18 (-0.02,

0.38)

0.18 (-0.02,

0.38)

0.21 (0.00,

0.42)

Month 12 0.35 (0.18,

0.52)

0.35 (0.17,

0.52)

0.35 (0.18,

0.53)

Month 18 0.41 (0.19,

0.62)

0.39 (0.15,

0.62)

0.38 (0.15,

0.62)

Month 24 0.37 (0.05,

0.69)

0.35 (-0.01,

0.72)

0.34 (-0.03,

0.71)

Between study variance estimates

Month 6 0.00 0.00 0.01

Month 12 0.00 0.00 0.00

Month 18 0.00 0.03 0.03

Month 24 0.13 0.23 0.23

Model Fit

AICd 106.9 107.2 116.7

aIndep = Independence
bHAR(1) = Heteroscedastic autoregressive (1)
cUN = Unstructured
dAIC = Akaike Information Criterion

doi:10.1371/journal.pone.0164898.t004
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The model fit as shown by the values of Akaike Information Criterion (AIC), where smaller
values indicate better fit, show that models 4 and 5 had much better fit than the rest of the
models. Models 2, 3 and 6 performed slightly better than the independencemodel and there
were very slight differences in the model fit between these four models. Some points can be
deduced from these results, at least for this particular data set: (1)accounting for correlation
between effect sizes through either the random study effectmodel or the correlated random
time effectsmodel yield similar results to the independencemodel where separate meta-analy-
ses are done at each time point; (2) results frommodels 4 and 5 clearly shows the benefit of
accounting for within-study serial correlations between effect sizes and the fact that model 4
performed better than model 5 strengthens this finding; and (3) the confidence intervals for
parameter estimates show that the best performingmodel 4 had the narrowest confidence
intervals compared to the other five models at all the four time points.

Discussion

This paper addresses the problem of estimating parameters for the meta-analysis of longitudi-
nal studies. In the case where a summarymeasure such as an incidence rate is reported by each
longitudinal study, a univariate meta-analysis of the incidence rates can be done and as an
example, we carried out a meta-analysis of incidence rates of pregnancy among young women
participating in vaginal microbicide trials for HIV prevention [47]. However, in cases where an
effect size is reported at each one of multiple pre-determined time points, a multivariate meta-
analysis [41] or the general linear mixedmodel [40] can be used to estimate overall effect sizes
at each time point, while taking account of any correlation between effect sizes, both within
and between studies. The general linear mixed model has an added advantage of more flexibil-
ity in specifying covariance structures for within- and between-studies. In this paper, we
applied the general linear mixedmodel to an example from [42] of a meta-analysis of odds
ratios from 17 trials for survival under experimental compared to control treatment. The sim-
ple approach of not accounting for the correlation, that is, the independencemodel where sepa-
rate meta-analyses were done at each of the time points was contrasted against models where
correlation was accounted for in different alternatives; including random study effects, corre-
lated random time effects and/or correlated within-study errors, or unstructured covariance
structures. This paper has proposed new combinations of covariance structures (models 4 and
6) that were not applied in either [41] or [40]. The results of all the six models applied in this
paper consistently showed that the odds of survival under the experimental treatment were sig-
nificantly higher compared to the control treatment across all the longitudinal time points
frommonth 6 to month 24 after treatment. Our results are consistent with the results from
[41], in which the authors applied the multivariate meta-analysis model to the same data [42].
The model that performed best was the one that accounted for within-study serial correlation
between effect sizes using the heteroscedastic autoregressive structure. Accounting for this cor-
relation using the compound symmetry showed very little benefit compared to the indepen-
dence model. In this particular longitudinal data set, the autoregressive covariance structure
yieldedmore precise estimates compared to the compound covariance structure.

Simulations to confirmwhether our findings of the benefit of taking account of within
study correlations using the autoregressive structure are needed since our results only apply to
our particular data set and cannot be generalized to other data sets. In this study, we have also
not explored whether our multivariate models would improve our point estimates in the pres-
ence of missing data since our example data set had veryminimal missing data. In the litera-
ture, some studies have shown that, in the presence of large amount of missing data, the
‘borrowing of strength’ from other studies in a multivariate meta-analysis can give more
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precise estimates compared to the univariate meta-analysis [39], [48], [49]. This has also been
shown in a particular case of outcome reporting bias, where the impact of this bias on the preci-
sion of point estimates was reduced in the multivariate meta-analysis compared to univariate
meta-analysis [38]. This could be explained by the fact that multivariate meta-analysis takes
account of the correlation between the outcomes and thereby adds information on the missing
outcomes [37]. Although this evidencemay imply that a multivariate meta-analysis can be
used to jointly meta-analyze outcomes when there are missing values without further need for
imputations, simulations are needed to show it.

This paper has potential to be extended in some respects. Our modeling approach was to
estimate point estimates at each fixed time point. The alternative approach is to treat time as a
continuous covariate and explore both linear and non-linear models as shown in Ahn and
French (2010) [50]. This may improve the estimation and is a subject of further study. The
models and analyses in this paper could be extended to where effect sizes are not necessarily
assumed to be normal. The methodology in this paper can also be extended where at each time
point, we have multiple effects sizes of different types. Though this creates complexity in the
modelling structures, such extensions are well suited in the prevailing longitudinal studies
where a number of outcomes are measured at multiple time points. We are currently working
on these methodological extensions.
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